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Abstract

Background: Traditional toxicological studies have relied heavily on various animal models to understand the
effect of various compounds in a biological context. Considering the great cost, complexity and time involved in
experiments using higher order organisms. Researchers have been exploring alternative models that avoid these
disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages
of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient
reproduction.

Methods: As these benefits allow large scale studies to be initiated with relative ease, the problem of how to
efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have
developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for
each chemical treatment.

Results: The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and
detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the
toxicity of different chemicals.

Conclusions: Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical
environments.
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Background
With the global development of science and technology,
new chemicals are continuously synthesized and used in
industrial production and human life. The need to assess
the toxic effects of these chemicals on the environment,
in addition to understanding the potential health

impacts of these chemicals is an urgent and ongoing
issue. The scientific community must take responsibility
for this task and continue to re-evaluate the best
methods for measuring toxicity. Assessment of the
potential toxicity of chemicals is crucial for the deter-
mination of safe levels of exposure to humans. Routine
methods to evaluate potential toxicity of a vast array of
chemicals on humans have employed rodent animal
models. Whilst very useful, this strategy is time consum-
ing and very expensive, in addition to the ethical
concerns it raises. The importance of these studies
which have incorporated mammalian model animals
cannot be denied as they have been integral in establish-
ing the Globally Harmonized System (GHS) of Classifi-
cation and Labeling of Chemicals [1], in addition to
countless breakthrough studies. However, if the field of
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toxicology is to progress, it will first need to develop
more progressive models of testing for toxicity.
Toxicity tests often utilize large numbers of rodents,

and is extremely expensive and time consuming, which
has resulted in a backlog of over 10,000 novel com-
pounds that are urgently awaiting further testing [2].
Current in vivo rodent models of toxicity can no longer
meet the increasing requirements of stringent toxico-
logical evaluation. Clearly, there is a critical need to de-
velop more rapid and efficient techniques of toxicity
screening. In vivo studies in non-rodent model organ-
isms provide a novel platform for screening a large num-
ber of chemicals for toxicity [3–10].
In recent years, the nematode Caenorhabditis elegans

has been utilized in toxicity testing as an alternative in
vivo animal model. C. elegans is a free-living nematode
that lives mainly in the liquid phase of soils. Since it was
first developed for use as a model animal in 1965 [11], it
has been widely employed in various fields such as de-
velopmental biology, aging, neurobiology, etc. [12, 13].
Its widespread application is mainly due to a range of
advantageous traits. Some key examples include a rela-
tively short life and reproduction cycle, plus an ex-
tremely small body size which contribute to making it
very easy and cheap to maintain large populations in the
laboratory. A trait particularly useful for toxicological
studies is the ease with which a vast array of C. elegans
phenotypes are able to be quantified before and after the
administration of a treatment. This includes the ability
to define changes to both internal and external pheno-
types due to the transparent nature of the body. In
addition, C. elegans is the first multicellular organism
whose genome has been fully sequenced. Within this
genome of 20,000 genes, about 40% of C. elegans genes
are homologous with mammals [14]. Of this homology,
many integral metabolic pathways share distinct similar-
ity between worm and mammal. From a toxicological
perspective this makes C. elegans a very interesting pro-
spect as it allows the metabolic effects of compounds to
be incorporated into studies. This was demonstrated by
our previous study [15] that showed the correlation of
C. elegans LC50s (24 h) to rat LD50s is similar to the re-
lationship between mouse and rat LD50s (r = 0.879), and
was stronger than the correlation of NHK cell median
inhibition concentrations (IC50)s vs. rat LD50s (r = 0.
844). These results indicate that C. elegans may be a
valuable model for predicting chemicals’ acute toxicity in
rodents.
In recent years, several studies have tried to incorpor-

ate worms into toxicological screening studies [2, 4, 6].
These studies demonstrated that C. elegans is able to be
utilized as a model to test the effects of chemicals toxic-
ities in vivo. However, these studies relied on the COPAS
system, which is a very expensive piece of equipment

that is difficult for researchers to access. In addition,
COPAS system only provides a limited range of data on
features such as worm length, width and fluorescence in-
tensity. This method of processing does not meet the
throughput demands of the modern chemical research
community.
The need to develop and improve automated strategies

to gather phenotypic data is essential to furthering our
understanding of biological functions in relation to
chemical compounds. Recently, there are some interest-
ing methods emerging that can be used to quantify phe-
notypes observed in C. elegans [16, 17]. These are
predominantly designed for analyzing the images from
nematode growth medium (NGM) agar plate experi-
ments and determining the expressed phenotypes. How-
ever, they mainly focus on the quantification of only four
phenotypes and the images are required to be extremely
uniform in nature for the image processing to be com-
pleted accurately. This requirement for strict uniformity
becomes an issue when the range of conditions that C.
elegans are housed in is considered. For example, in a
situation such as a 384 well plate experiment, and the
well boundary and some uneven illumination problems
would impact the results of current automated methods.
A cheap, fast and quantitative method for toxicity

screening in C. elegans would benefit the field
immensely. Here we report a method that combines a li-
quid toxic culturing system utilizing a 384-well plate
with an automated microscope stage for image acquisi-
tion. We have utilized this method to classify automatic-
ally the toxicity of 19 compounds, under multiple
concentrations according to specifically identified fea-
tures of worms’ phenotypes. By analyzing our defined
phenotypes of worms exposed to chemicals at different
concentrations, we found that phenotype profiling re-
vealed stable functions to classify and predict the toxicity
of different chemicals.

Results
Phenotypes profiling
From the large amount of image data processed, 33 dis-
tinct phenotypes were quantified (methods) across the
19 chemical compounds and at each of the 3 time points
(0, 12 and 24 h), respectively. All compounds tested
were shown to influence phenotype at certain time
points and concentrations. In the interest of keeping this
article succinct, of the 19 compounds tested, only the
phenotype profile observed during treatment with lactic
acid has been presented graphically to demonstrate the
accuracy and depth of data collection that is possible
using our methodology (Fig. 1). Extra examples of
phenotypic profile data have been included in the
Additional file 1: Figures S1 and S2. These
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supplementary figures show similar patterns to lactic
acid, description of results will be limited to those
observed in lactic acid.
The worms died quickly and became straighter and

less curved as the chemical concentration increased.
There were no significant differences between treat-
ments and control (k-medium) for all phenotypes at
the initial time point of the experiment (0 h). After
12 h of exposure to a given chemical dosage, the
worms showed a range of phenotypic variations
among different concentrations and control groups.
For example, the major axis length (see phenotypes
description) increased in all experiments. This was
demonstrated by a gradient trend from higher to

lower chemical concentrations (Fig. 1a). The trend is
more significant in minor axis length. At 12 h, the
Student’s t-Test shows that all experiments with 5 dif-
ferent concentrations are significantly different from
control (Fig. 1b, p-value = 0.02121, 0.02889, 0.01905,
1.919e-05 and 2.501e-05 for 5 concentrations from
lower to higher concentrations). Our findings for the
24 h 50% lethal concentration (LC50 as determined
by previous studies [15]) there is already a clear dis-
tinction between higher and lower concentrations at
the time point of 12 h. Two concentrations (10 mg/
ml and 4.64 mg/ml) which are both higher than the
LC50, show lower level of minor axis length com-
pared with the other three concentrations (Fig. 1b).

Fig. 1 Phenotypes of lactic acid under different concentrations. (a) Major axis length. (b) Minor axis length. (c) Minor major axis length ratio. (d)
Eccentricity. (e) Motility (the moved area). (f) Motility (the moved area/worm size). * and ** denote unpaired two-sided Student’s t-Test p-value
< 0.05 and 0.01, respectively. Bar plots shows the average quantification for each phenotype on single worms. Error bars denote +/− standard
deviation (SD). Concentration unit: mg/ml
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The ratio between single worms’ minor and major axis
length shows similar patterns as minor axis length (Fig. 1c),
the higher values indicate the worms would be observed as
more bent. The eccentricity shows the opposite pattern, be-
cause lower eccentricity values indicate the worm would
appear more bent (Fig. 1d).
In terms of quantified worm motility, both the worm

moved area and the moved ratio (moved area/worm
size) show similar patterns (Fig. 1e, f ). At the 0 h time
point, there were no significant differences among
worms across all experiments. As time passed, the motil-
ity of worms in control k-medium conditions showed a
stable decrease. At 12 h, all the treatments showed very
significant differences compared with control at that
time point. We found there are drastic differences in
motility for the concentrations higher or lower than the
LC50 (2.79 mg/ml for Lactic Acid, see Additional file 1:
Table S1.) at 24 h. Two concentrations (10 mg/ml and 4.
64 mg/ml) which are both higher than the LC50 for
Lactic Acid show lower levels of motility compared with
the other three concentrations. This suggests that worms

died quickly and became less motile as the chemical
concentration increased.
These results indicate that the phenotypes we quanti-

fied are valid potential markers for chemical toxicity
identification in C. elegans.

Phenotypes classification
To visualize the various phenotypes and treatments’ re-
lationships among each other, all features were z-score
normalized within each feature. This allowed clustering
across different phenotypes and experiments using the
BIC-SK algorithm [18], which is an adaptive cluster
method. This method can automatically determine the
optimal number of samples and feature clusters based
on the Bayesian Information Criterion. With this ap-
proach, we were able to detect and visualize the various
phenotypes at the same time. We find that all 33 quanti-
fied phenotypes were able to be classified accurately into
distinct groupings. This grouping was also possible at each
of the time points measured (0 h, 12 h and 24 h) (Fig. 2).

Fig. 2 Cluster on all phenotypes of all experiments (3 time points). Each column is one feature (See Methods for a detailed name and description
of each feature), each row is an experiment. The proportions of each time point’s experiments (in each sub-cluster) are listed in the right of
heat map
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We found that at 0 h experiments have different pat-
terns compared with later time points. The features
which are based on all single worms or only live single
worms respectively, show similar patterns compared with
other features. It indicates that it is more similar within
the same measurement than different measurements.
Among these features worm length, perimeter,

major axis length and eccentricity have similar pat-
terns. Survival rate and worm motility are clustered
together. Most of the 0 h data shows higher survival
rate and motility compared to later time points. This
is in addition to later time points showing greater
length and perimeter measurements compared to 0 h
observations.

In the cluster of one time point (12 h, Fig. 3a), we can
see that higher concentration experiments (and therefore
a higher degree of toxicity) have lower survival rate and
motility than lower concentration experiments (lower
toxicity). In the higher concentration experiments lower
levels of minor axis length, minor/major axis length,
higher levels of major axis length and eccentricity are all
observed. In contrast, the lower concentration experi-
ments show higher levels of minor axis length and
minor/major axis length, lower levels of major axis
length and eccentricity.
The 24-h results (Fig. 3b) are comparable to the

12-h results. It was observed that higher concentra-
tion experiments (high toxicity) have lower survival

Fig. 3 a Cluster on the mean profile of 8 repeats, one time point (12 h). b Cluster on the mean profile of 8 repeats, one time point (24 h). Each
column is one feature (we show the detailed name of each feature in Methods). The proportions of different concentrations’ experiments (in
each sub-cluster) are listed in the right of heat map. LC50 is 50% lethal concentration
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rate and motility than lower concentration experi-
ments (lower toxicity).
From the clustering results it appears worms died

quicker, were less motile, straightened and therefore
showed less body curvature as the concentration increased.

The main trends under these phenotypes
To detect whether time, concentration and toxicity asso-
ciated principle components underlie these quantified
phenotypes; we performed Principle Component Analysis
(PCA). The advantage of using PCA is that it can
summarize all phenotypes to several main components.

Firstly, PCA results on the mean profile of 8 repeats (3
time points, Fig. 4a) show some main components to
distinguish different time points. Three different colors
represent the experiments under different time points.
We found that the first component can distinguish 0 h
time point from the other two time points. The increase
of the third component shows that there is one change
trend from 12-h to 24-h.
The PCA on the phenotypes observed at the 12-h time

point and the concentration of each experiment was
ranked according to relative order for each chemical
compound (Fig. 4b). We found the experiments with

Fig. 4 a PCA on the mean profile of 8 repeats (3 time points). b PCA on the mean profile of 8 repeats (12 h). c PCA on the mean profile of single
chemical compound (KCL and Lactic acid of 12 h), the value with different color is the concentration of different experiment
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lower concentrations were similar to the control, whilst
being drastically different from the middle and higher
concentration experiments for the first main component.
In the second main component, most of higher concen-
tration experiments show marked differences from lower
and middle concentrations.
From the single chemicals PCA result (Fig. 4c), we

found the first main component shows considerable dif-
ferences between higher and lower concentrations. Con-
centrations can be separated into two parts from left to
right. Each part also has some difference from upper to
lower shown by the third main component.

Toxicity prediction
In general, 50% lethal dosage (LD50) and 50% lethal
time (LT50) are used to describe the chemicals’ toxicity
in rodents (rat/mouse) model in vivo. The correlation of
C. elegans LC50s (24 h) vs. rat LD50s is equal to the cor-
relation of mouse vs. rat LD50s (r = 0.879), and is stron-
ger than the correlation of NHK cell median inhibition
concentrations (IC50)s vs. rat LD50s (r = 0.844), which
indicate that C. elegans may be a valuable model for pre-
dicting chemicals’ acute toxicity in rodents [15].
The 24-h 50% lethal concentration is derived from

previous independent experiment results [15]. Using the
methods already described we found that the quantified
phenotypes correlate closely with chemical concentra-
tion. Then we used these quantified phenotypes to pre-
dict if the concentration is under/above the 24 h 50%
lethal concentration (LC50). For each chemical, we clas-
sified different concentration experiments to 2 classes by
the concentration higher or lower than 24 h at 50% le-
thal concentration (LC50).
Then for each chemical we applied support vector ma-

chine (SVM) to do the 5-fold cross validation prediction
tests only by the phenotypes quantified for 12 h
experiments.
Results show that we can distinguish if the experi-

ment’s concentration is higher or lower than the 24 h
LC50 with a high degree of accuracy only by the

quantified features from the time point of 12 h (Table 1).
The classifier has an average accuracy of 91.2% by 5-fold
cross-validation among all chemical experiments. These
results indicate that we can assess the acute toxicity only
based on the phenotypes quantified for 12-h experi-
ments. This is a useful tool which will shorten the
experimental observation time in the future.

Discussion
Large numbers of novel chemicals are produced annu-
ally and current models of toxicological studies are un-
able to meet the demands of modern scientific research
and industry.
Studies utilizing lower order in vivo model organisms

(such as C. elegans) have the opportunity to make a large
contribution to the efficient risk assessment of chemicals
toxicity. The development of better computational tools
outlined in this article provides an opportunity for the
creation of faster toxicity screening. Testing with the
nematode C. elegans offers a unique approach that pos-
sesses advantages over cell-based in vitro assays, which
are rapid but may not be physiologically relevant in the
context of a whole organism. Mammalian studies, which
may better represent human responses to toxic chemi-
cals are slow and expensive and therefore the model we
present could act as a useful complementary tool to
mammalian trials [4].
Our model allows the growth of nematodes exposed

to water soluble compounds of known toxicity to be
assessed by a screening system in combination with au-
tomated phenotype profiling methods. Modeling results
were used to rank order the test compounds according
to their toxicity as determined by the nematode assay.
This method proved useful in identifying very toxic
compounds from compounds with moderate and low
toxicity.
It is clear from our results that this new method of

quantitative screening on 384 well plates for chemicals
can detect the degree that toxicities alter the phenotypes
of C. elegans. We found that phenotype profiling

Table 1 The cross validation prediction performance

Compound name Cross-validation accuracy (%) Compound name Cross-validation accuracy (%)

Potassium chloride 93.3 Diquat dibromide 77.4

Cadmium chloride 78.6 Glycerol 96.3

Atropine sulfate 88.9 Sodium dichromate 90

Lactic acid 100 Manganese chloride 90.6

Anhydrous two propanol 98 Sodium chloride 82.5

Ethanol 90.6 Trichloroacetic acid 100

Ethylene glycol 94.6 Citric Acid 81.8

Sodium Fluoride 100 Orthoboric acid 98.2

Sodium Hypochlorite 89.6
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revealed conserved functions to classify and predict the
toxicity of different chemicals using the nematode C.
elegans as an in vivo model organism.
In this study, 19 standard chemicals acute toxicity tests

based on the 384-well plate were conducted and the
movie for each well was acquired automatically by digital
camera (methods). About 100GB image data was proc-
essed by our program written in MATLAB to quantify
33 phenotypic features. From these 33 phenotypic fea-
tures we performed Principle Component Analysis
(PCA) to get several main components and classify them
to several patterns according to 3 treatment times and
several treatment concentrations, respectively. Results
showed that the chemical toxicity could be predicted by
the treatment concentration higher or lower than the
50% lethal concentration (LC50) at 24 h.
Our previous study [15] showed that the correlation of

C. elegans LC50s (24 h) to rat LD50s is similar to the re-
lationship between mouse and rat LD50s (r = 0.879), and
was stronger than the correlation of NHK cell median
inhibition concentrations (IC50)s vs. rat LD50s (r = 0.
844). Here, the automatically quantified phenotypes
show significant difference among different concentra-
tions, it is similar to the previously study [15]. We also
show that the automatically quantified phenotypes can
be used to distinguish the chemical concentration is
under/above the 24 h 50% lethal concentration (LC50 is
determined by previous studies [15]).
In summary, the methodology presented using the

rapid toxicity screening and evaluation system of non-
rodents correlates with the traditional animal acute
toxic effects and could be used to assess new chemicals
or complex mixed chemicals. The scientific principle
of replacement, reduction and refinement in regards to
animal ethics is the central motivator of this research
as it is hoped that these findings reduce the pressure
currently on higher order animals to be relied upon for
toxicology research. This study is significant improve-
ment to current system methods which use C. elegans
to pre-screen the toxicity of new chemicals. Our
method can quantify a number of phenotypes that are
difficult to calculate manually, such as the worm moti-
lity, worm size, width and gray intensity. When com-
pared with traditional methods, our method delivers a
more efficient and automated collection of data. This
is possible mainly due to the advancements we have
made in terms of automation, level of throughput and
quality of data.

Conclusions
This new method provides a powerful tool to re-
searchers to understand the effects of chemical com-
pounds. By combining a 384-well liquid toxic culturing
plate with an automated image acquisition microscope

system, we demonstrated quantitative screening of 19
chemical compounds using C. elegans. 33 worms’ fea-
tures were identified for each chemical treatment. The
results demonstrate the compounds with different toxi-
cities were shown to alter the phenotypes of C. elegans
in distinct and detectable patterns. Moreover, the power
of phenotypic profiling in C. elegans revealed conserved
functions to classify and predict the toxicity of different
chemicals. The development of better computational
tools outlined in this article provides an opportunity for
the creation of faster toxicity screening in C. elegans;
therefore, the model we present could act as a useful
complementary tool to mammalian trials.

Methods
Chemicals and concentrations
The 19 standard chemicals used (at the third to sixth
levels of the GHS) and their respective concentrations
are listed in Additional file 1: Table S1. The four to eight
gradient concentration levels were designed according to
Horn method. All chemicals were obtained from Sigma-
Aldrich Company, and diluted by K-medium (32 mM
KCL and 52 mM NaCL in 1 L ultrapure water). We used
K-medium as control to compare the alterations caused
by the toxicants.

Strains
All nematodes used were wild-type N2, originally ob-
tained from the Caenorhabditis Genetics Center (CGC).
Synchronized L1 worms were obtained by bleaching and
then put on the nematode growth medium (NGM)
plates seeded with Escherichia coli OP50 and kept at
20 °C. Worms at L4 stage were washed off the plate by
K-medium and added into 384-well plates, each well
containing ~ 20 worms. These synchronized, L4 stage
worms were then ready for chemical treatment. Within
24 h of the chemical treatment experiment, we did not
add bacteria to 384-well plates.

Chemical treatment
Nineteen standard chemicals were administered at con-
centrations a third to sixth levels of the GHS for 384-
well plate acute toxicity experiment tests. According to
the C. elegans LC50 of chemicals, worms were exposed
to chemicals at a single dosage of either; 10 mg/ml, 4.
64 mg/ml, 2.15 mg/ml. 1 mg/ml, 0.464 mg/ml, 0.
215 mg/ml, 0.1 mg/ml or 0.0464 mg/ml. Eight parallel
tests were then carried out for the specific points of the
concentration gradients for each chemical. Worms were
then observed with each specific chemical condition in
K-medium for 0, 12 h, or 24 h.
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Video capture
Images and video was captured at three distinct time
points; 0, 12 and 24 h after noxious compounds were
added. All images and videos were collected using a
digital camera attached to a Nikon SMZ1000 automatic
microscope.

Image processing
A program for image processing and analysis, automated
worm recognition followed by automated features quan-
tification was written using MATLAB software. The
major procedures are described and shown in Fig. 5.
After solving the uneven illumination problem [19], we
were able to distinguish worms from the background of
the well and quantify their features.

Experimental setting
Following chemical treatments, we programmed the au-
tomated acquisition of video (7 frames per second for
2 s) for each well at three time points (0 h, 12 h and
24 h) by digital camera (methods). This resulted in a tre-
mendous amount of image data (~100GB) automatically
collected through all of the tests (3 plates of 384-well
plate treatments). Next, we used the image processing
method we developed using MATLAB to quantify valu-
able phenotypic features to ultimately analyze and to
classify the toxicity effect on worms.

Phenotypes definition and computation
Defined features include survival number related fea-
tures, gray intensity related features, worm size, curva-
ture, and motility related features:

F1. The single worm number in this experiment;
F2. The alive single worm number;
F3. The worms’ disperse situation, which is computed
by the ratio between single worm number and total
worm number;
F4. The average distance of all worms’ centroid;
F5. The standard deviation of distance among all
worms’ centroid;
F6. The single worms’ average size;
F7. The single worms’ average length;
F8. The single worms’ average width;
F9. The single worms’ average perimeter;
F10. The single worms’ average gray intensity;
F11. The single worms’ standard deviation of gray
intensity;
F12. The alive single worms’ average size;
F13. The alive single worms’ average length;
F14. The alive single worms’ average width;
F15. The alive single worms’ average perimeter;
F16. The alive single worms’ average gray intensity;
F17. The alive single worms’ standard deviation of
gray intensity;
F18. The single worms’ major axis length, which is
computed by the major axis of the ellipse that has the
same normalized second central moments as the worm
body region;
F19. The alive single worms’ major axis length;
F20. The single worms’ minor axis length, which is
computed by the minor axis of the ellipse that has the
same normalized second central moments as the worm
body region;
F21. The alive single worms’ minor axis length;

Fig. 5 Method design. Mainly there are three steps in our method: (1) culture worms in 384-well plates with different chemicals and take video
for each well; (2) process these videos, get each frame, reduce the uneven illumination, segment the image, and then quantify phenotypes for
worms under each chemical treatment; (3) characterize different chemicals and their toxicities based on these quantified phenotypes
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F22. The ratio between single worms’ minor and major
axis length, more close to 1 more close to one circle;
F23. The ratio between alive single worms’ minor and
major axis length;
F24. The single worms’ eccentricity, which is the ratio
of the distance between the foci of the ellipse and its
major axis length, the value is between 0 and 1, an
ellipse whose eccentricity is 0 is actually a circle, while
an ellipse whose eccentricity is 1 is a line segment. It is
computed from the outer ellipse of the worm’s body
region. We used it to show the worm body bent degree,
because lower eccentricity values indicate the worm
would appear more bent;
F25. The alive single worms’ eccentricity;
F26. The single worms’ orientation, which is the angle
between the x-axis and the major axis of the ellipse;
F27. The alive single worms’ orientation;
F28. The single worms’ motility, which is the moved area;
F29. The single worms’ motility, which is computed by
the moved area/worm size;
F30. The alive single worms’ motility, which is the
moved area;
F31. The alive single worms’ motility, which is
computed by the moved area/worm size;
F32. The smoothed live worm number;
F33. Survival rate.

Statistical analysis
Results are presented as means ± SD. For the compari-
sons of phenotypes between each concentration treat-
ment and control (k-medium) at each time point, we
analyzed the data using unpaired two-sided Student’s t-
Test in R. P values < 0.05 were considered statistically
significant. The R packages were used for PCA [20] and
SVM [21] analysis.

Additional file

Additional file 1: Figure S1. Phenotypes of Diquat dibromide under
different concentrations. Figure S2. Phenotypes of Sodium dichromate
under different concentrations. Table S1. Experiments chemical
concentration distribution. (PDF 297 kb)
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