ERRATUM Open Access ## Erratum to: Synthetic and natural antioxidants attenuate cisplatin-induced vomiting Javaid Alam¹, Fazal Subhan^{1*}, Ihsan Ullah², Muhammad Shahid¹, Gowhar Ali¹ and Robert D. E. Sewell³ ## **Erratum** After publication of the original article [1], it was brought to our attention that the unit for concentration in the first column of Table 2 should read $\mu g/mL$. In addition, the 9th row in Table 2 should read EC₅₀ ($\mu g/mL$). The original article was corrected. The corrections have been published in this erratum for quick reference. We apologise for any confusion this may have caused. ## **Author details** ¹Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan. ²Department of Pharmacy, University of Swabi, Swabi, Pakistan. ³Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF103NB, UK. Received: 25 January 2017 Accepted: 25 January 2017 Published online: 01 February 2017 ## Reference Alam J, Subhan F, Ullah I, Shahid M, Ali G, Sewell RDE. Synthetic and natural antioxidants attenuate cisplatin-induced vomiting. BMC pharmacol toxicol. 2017;18(4):1–11. ¹Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan ^{*} Correspondence: fazal_subhan@upesh.edu.pk **Table 2** Percent of DPPH free radical scavenging activity and antioxidant strength of N-(2-mercaptopropionyl) glycine (MPG), vitamin C (Vit- C), grape seed proanthocyanidin (GP), *B. monnieri* n-butanolic fraction (BM-ButFr) or standard butylated hydroxytoluene (BHT) against their respective concentrations | Concentration (µg/mL) | Percent inhibition (%) | | | | | |--------------------------|------------------------|---------------------|---------------------|---------------------|---------------------| | | BHT | MPG | Vit-C | GP | BM-ButFr | | 1 | 15.0 ± 0.7 | 20.0 ± 2.1 | 14.6 ± 1.5 | 36.4 ± 0.8 | 24.5 ± 0.7 | | 10 | 24.4 ± 4.2 | 20.8 ± 1.8 | 15.7 ± 0.6 | 71.6 ± 0.7 | 20.9 ± 0.8 | | 30 | 22.1 ± 1.4 | 19.4 ± 1.2 | 17.3 ± 1.5 | 82.6 ± 1.2 | 32.2 ± 2.4 | | 50 | 22.8 ± 0.5 | 24.4 ± 1.0 | 21.2 ± 2.4 | 92.4 ± 0.1 | 46.5 ± 2.9 | | 100 | 58.6 ± 3.8 | 94.0 ± 0.01 | 92.7 ± 0.7 | 92.4 ± 0.2 | 90.9 ± 0.5 | | 200 | 89.7 ± 2.4 | 96.2 ± 0.2 | 96.0 ± 0.3 | 91.6 ± 0.3 | 90.7 ± 0.3 | | 500 | 93.8 ± 0.1 | 96.0 ± 0.7 | 96.7 ± 0.2 | 89.6 ± 0.2 | 89.9 ± 0.4 | | Antioxidant strength | | | | | | | EC ₅₀ (µg/mL) | 98.17 ± 3.842 | 67.66 ± 3.095 | 69.42 ± 3.027 | 6.498 ± 0.630 | 55.61 ± 1.137 | | Antiradical power | 0.0102 ± 0.0004 | 0.0148 ± 0.0007 | 0.0143 ± 0.0005 | 0.1567 ± 0.0145 | 0.0159 ± 0.0010 | | Stoichiometry | 196.3 ± 7.685 | 135.3 ± 6.191 | 138.8 ± 6.053 | 13.00 ± 1.261 | 111.2 ± 2.274 | Values are expressed as mean \pm S.E.M from three separate experiments