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Abstract
Background Microcystins (MCs), potent hepatotoxins pose a significant health risk to humans, particularly children, 
who are more vulnerable due to higher water intake and increased exposure during recreational activities.

Methods Here, we investigated the role of host microbiome-linked acetate in modulating inflammation caused by 
early-life exposure to the cyanotoxin Microcystin-LR (MC-LR) in a juvenile mice model.

Results Our study revealed that early-life MC-LR exposure disrupted the gut microbiome, leading to a depletion of 
key acetate-producing bacteria and decreased luminal acetate concentration. Consequently, the dysbiosis hindered 
the establishment of a gut homeostatic microenvironment and disrupted gut barrier function. The NOD-like receptor 
family pyrin domain – containing 3 (NLRP3) inflammasome, a key player in MC-induced hepatoxicity emerged 
as a central player in this process, with acetate supplementation effectively preventing NLRP3 inflammasome 
activation, attenuating hepatic inflammation, and decreasing pro-inflammatory cytokine production. To elucidate 
the mechanism underlying the association between early-life MC-LR exposure and the progression of metabolic 
dysfunction associated steatotic liver disease (MASLD), we investigated the role of acetate binding to its receptor 
-G-protein coupled receptor 43 (GPR43) on NLRP3 inflammasome activation. Our results demonstrated that acetate-
GPR43 signaling was crucial for decreasing NLRP3 protein levels and inhibiting NLRP3 inflammasome assembly. 
Further, acetate-induced decrease in NLRP3 protein levels was likely mediated through proteasomal degradation 
rather than autophagy. Overall, our findings underscore the significance of a healthy gut microbiome and its 
metabolites, particularly acetate, in the progression of hepatotoxicity induced by early life toxin exposure, crucial for 
MASLD progression.

Conclusions This study highlights potential therapeutic targets in gut dysbiosis and NLRP3 inflammasome activation 
for mitigating toxin-associated inflammatory liver diseases.
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Introduction
Microcystins (MCs) are a class of potent hepatotox-
ins produced by cyanobacterial strains like Anabaena, 
Hapalosiphon, Microcystis, Nostoc, Planktothrix, and 
Phormidium [1, 2]. Microcystin-LR (MC-LR) is the pre-
dominant form of MCs found in fresh and brackish 
waters. It is also the most toxic and commonly studied 
congener of MC. Exposure to MC-LR and other MCs 
commonly occurs via drinking water although there are 
other routes of exposure like dermal and inhalation of 
aerosolized MC particles [3–5]. Children are particularly 
vulnerable to health effects from exposure to MC-LR via 
drinking water as they have a higher water intake per 
body weight compared to adults [6]. Also, children are at 
an increased risk of exposure to MCs from recreational 
activities around water bodies. Further, infants and chil-
dren are especially susceptible to toxic insults as their 
liver is still undergoing development. At around 2 years 
from birth, the human liver is completely developed and 
functional [7].

The gut microbiome is highly vulnerable to toxin expo-
sure during early life, as it is not fully established and 
only stabilizes around three years of age [8–11]. The colo-
nization of the gut by Bacteroidetes is a crucial early step 
in microbiome establishment, commencing after wean-
ing when the intake of dietary fiber also increases [12]. 
The breakdown of complex polysaccharides into simple 
sugars and short-chain fatty acids (SCFAs), such as ace-
tate through the Wood–Ljungdahl pathway and pyruvate 
decarboxylation to acetyl–CoA pathways, plays a key role 
in cross-feeding and the establishment of beneficial bac-
teria in the gut microbiome [13–15]. A toxic insult dur-
ing early life that disrupts the colonization by beneficial 
bacteria can have enduring consequences on gut health 
and overall organ homeostasis in adulthood through var-
ious Gut–Organ Axis pathways [13, 16–20].

Previous studies from our research group have shown 
that dysbiosis associated with non-alcoholic fatty liver 
disease (NAFLD) [currently termed as metabolic dys-
function-associated steatotic liver disease (MASLD)] 
like conditions following MC-LR exposure results from 
the activation of nucleotide-binding domain-like recep-
tor protein 3 (NLRP3) inflammasome [21, 22]. Also, 
early life exposure to MC-LR led to the potentiation of 
MASLD in adulthood which was further exacerbated by 
the consumption of a high-fat diet and this effect was 
absent in mice that lacked NLRP3 [23]. Thus, activation 
of the NLRP3 inflammasome is key to the development 
of MC-LR induced pathological symptoms of MASLD in 
adult life.

The NLRP3 inflammasome is a pattern-recognition 
multiprotein receptor complex, composed of the pro-
caspase 1 effector protein, the adaptor protein caspase-
recruitment domain apoptosis-associated speck-like 

protein 2 (ASC2), and the cytoplasmic receptor NLRP3, 
commonly known as the inflammasome sensor molecule 
[24]. It is important for defense against pathogens and the 
maintenance of homeostasis. The canonical activation of 
NLRP3 inflammasome is a two-step process – priming 
and assembly. Firstly, Toll–like receptor 4 (TLR4) activa-
tion and/or tumor necrosis factor (TNF) signaling leads 
to priming that includes increased mRNA expression of 
NLRP3, pro-interleukin-1β and pro-interleukin-18 genes 
[25–27]. Secondly, recognition of pathogen-associated 
molecular patterns (PAMPs) and damage-associated 
molecular patterns (DAMPs) including reactive oxygen 
species (ROS), mitochondrial dysfunction-related release 
of mitochondrial DNA and cardiolipin, ion flux changes 
(K+/Cl− efflux, and Ca2+ influx), and lysosomal damage 
can trigger assembly of the NLRP3 inflammasome com-
plex [28–31]. The activation of NLRP3 inflammasome 
leads to proteolytic activation of interleukin-1β (IL-1β), 
interleukin-18 (IL-18), and Gasdermin D. Gasdermin 
D oligomerizes to form a pore complex at the plasma 
membrane leading to pyroptotic cell death and release of 
mature IL-1β and IL-18 [32]. Pyroptosis due to NLRP3 
inflammasome activation has been noted as a mechanism 
of MC-LR induced intestinal and hepatotoxicity [33, 34].

Previous studies along with preliminary microbiome 
analysis for this research work indicated that there was a 
depletion in key SCFA-producing bacteria and decreased 
luminal acetate concentration due to early life expo-
sure to MC-LR [35, 36]. Previous literature indicates 
that SCFAs play a vital role in maintaining gut barrier 
integrity and preventing the systemic circulation of gut 
microbiome-derived inflammatory triggers like bacterial 
lipopolysaccharide, peptidoglycan, flagellin, and nucleic 
acid variants [14, 37, 38]. Further, SCFA like acetate and 
butyrate are known to be immunomodulators [39–42]. 
Higher circulation of PAMPs and DAMPs due to gut 
leaching is associated with the onset and progression of 
MASLD pathology to more severe forms like steatohepa-
titis and liver cirrhosis [20, 23].

Acetate, a SCFA, has been shown to possess anti-
inflammatory properties. Acetate has been found to 
inhibit the production of pro-inflammatory cytokines, 
such as IL-6 and TNF-α by immune cells [43, 44]. It 
has been shown to promote the polarization of macro-
phages towards an anti-inflammatory M2 phenotype 
at high doses, which produces anti-inflammatory mol-
ecules and helps resolve inflammation [45]. Acetate can 
bind to and activate specific GPRs, including GPR43 and 
GPR41. GPR43 activation by acetate inhibits the pro-
duction of pro-inflammatory cytokines in immune cells, 
contributing to the suppression of inflammation. Acetate 
binding to its receptor GPR43 leads to attenuation of 
NLRP3 inflammasome activation by causing NLRP3 pro-
tein degradation in bone marrow-derived macrophages 
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[43]. Acetate serves as an energy source for various 
cells, including immune cells, intestinal epithelial cells, 
and colonocytes [46]. Thus, acetate promotes the main-
tenance of a healthy gut barrier. While more research 
is needed to fully understand the specific anti-inflam-
matory mechanisms of acetate, as an important SCFA 
acetate contributes to the overall anti-inflammatory envi-
ronment in the gut and the body [13].

Taking into consideration the immunomodulatory role 
of acetate, the depletion of key SCFA-producing bacteria, 
and lower concentration of acetate in luminal contents 
due to early life exposure to MC-LR, we were interested 
in understanding the effect of acetate supplementation 
on MC-LR related intestinal and hepatic pathophysiol-
ogy. Therefore, we aimed to explore the role of the SCFA 
acetate on intestinal and hepatic inflammation in this 
current study using an established murine model of early-
life MC exposure. We also investigated whether oral 
acetate supplementation prevented the MC-LR induced 
pro-inflammatory phenotype leading to MASLD–like 
outcomes in adulthood and the mechanistic role of 
acetate-mediated attenuation of NLRP3 inflammasome 
activation. To this end, we used a juvenile mice model 
primed with MC-LR with or without oral supplementa-
tion of SCFA acetate and appropriate control groups. We 
speculated that the mechanism for such an effect would 
be linked to the regulation of NLRP3 inflammasome 
activation.

Materials and methods
Materials
Sodium acetate was acquired from Sigma-Aldrich (St. 
Louis, MO, USA), and MC-LR was purchased from Cay-
man Chemical Company (Ann Arbor, MI, USA). Primary 
antibodies against CD68, α-SMA, Claudin2, Occludin, 
and NLRP3 were acquired from Abcam (Cambridge, 
MA, USA). Primary antibodies against IL-1β, ASC2, and 
β-actin were purchased from Santacruz Biotechnology in 
Dallas, Texas, USA. The Vector Labs (Burlingame, CA, 
USA) provided the species-specific biotinylated conju-
gated secondary antibody and the Streptavidin-horse-
radish peroxidase (Strp-HRP) (Vectastain Elite ABC 
kit). Thermo Fisher Scientific (Waltham, MA, USA) sup-
plied the fluorescence-conjugated Alexa Fluor second-
ary antibodies and ProLong Diamond antifade mounting 
medium with 4′,6-diamidino-2-phenylindole (DAPI). 
All of the chemicals required for this study were bought 
from Sigma-Aldrich (St. Louis, MO, USA) unless other-
wise stated. AML Laboratories (St. Augustine, Florida, 
USA) processed the mouse liver and intestinal tissues for 
paraffin embedding and sectioning into slides. Cosmos 
ID (Rockville, Maryland, USA) carried out the bacteri-
ome analysis.

Animals
Male, juvenile, wild-type (WT), pathogen-free C57BL/6J 
mice were obtained from Jackson Laboratories (Ban Har-
bor, ME, USA) and used in this work. The Institutional 
Animal Care and Use Committee (IACUC) and National 
Institutes of Health (NIH) guidelines for the humane 
care and use of laboratory animals were strictly followed 
in all mouse experiments. The animal experimentation 
techniques for this work were approved by the Univer-
sity of South Carolina in Columbia, South Carolina, and 
adhered to ARRIVE guidelines.

All mice were placed in a temperature-controlled room 
(22–24  °C) with a 12-hour light/12-hour dark cycle and 
they had unlimited access to food and water. After dosing 
was complete at the age of 10 weeks all mice were eutha-
nized. The primary method of euthanasia was overdose 
of anesthetic – isoflurane. Inhalation exposure to 4% 
isoflurane was continued for a minute after respiratory 
arrest. Euthansia was confirmed by cervical dislocation. 
Liver and small intestine tissue from each mouse were 
removed and promptly preserved in 10% neutral buff-
ered formaldehyde (Sigma-Aldrich, St. Louis, MO, USA). 
Additionally, serum samples were extracted from freshly 
drawn blood and maintained at a temperature of − 80 °C. 
Fecal pellets were collected then immediately snap-fro-
zen and kept at − 80 °C for bacteriome analysis.

Experimental animal model
24 WT mice (4 weeks old, post-weaning) were used in 
this study, and they were randomly assigned to one of 
four groups (n = 6 per group): control group (CHOW), 
MC-LR treated (MC), acetate supplementation followed 
by MC-LR treated (MC + AC), or solely acetate supple-
mented (AC). For the whole period of the trial, from 4 to 
10 weeks of age, the groups MC + AC and AC were sup-
plemented with acetate at a dose of 2 g/kg via oral gavage. 
Based on earlier research, this dose of acetate was cho-
sen [47, 48]. The treated group (MC) of mice were dosed 
with MC-LR [5 µg/kg body weight; dissolved in ethanol 
and then diluted in Phosphate buffered saline (PBS) for 
a continuous 2 weeks by oral gavage route [8] whereas 
the control group (CHOW) of mice got just vehicle (PBS) 
at the age of 6 weeks. All WT mice received the MC-LR 
treatment, were given a 4-week rest period to allow them 
to grow, and were then euthanized at the age of 10 weeks. 
Based on results from our previous research and pre-
liminary studies, it was determined that the experiments 
maintain a specified sample size of n = 3 for each treat-
ment group that had a power of 0.08 at an alpha of 0.05.

Rat primary Kupffer cell culture
Primary rat Kupffer cells were purchased from Cell Bio-
logics, Inc. (Chicago, IL, USA). The cells were main-
tained in Dulbecco’s modified Eagle’s medium (DMEM) 



Page 4 of 17More et al. BMC Pharmacology and Toxicology           (2023) 24:78 

(Catalog number: 11995065 Thermo Fisher Scientific, 
Rockford, IL, USA) and supplemented with 10% fetal 
bovine serum (FBS) (Catalog number: F-0500-D, Atlas 
Biologicals, Fort Collins, CO, USA), 2mM L-Glutamine, 
10U/L Penicillin and 100 µg/kg Streptomycin (Gibco, NY, 
USA) and incubated in a humidified 5% CO2 incubator at 
37 °C. The cells were plated in 6-well tissue culture plates 
and were allowed to grow till they reached around 70% 
confluency. After overnight serum starvation (0.2% FBS) 
the cells were treated with bafilomycin A1 (40 nM) [47, 
48] an autophagy inhibitor, or with a GPR43 antagonist 
GLPG0974 (0.1 µM) for 1 h before treatment [49]. Cells 
were then treated with vehicle (Control), MC-LR (20 
µM), and acetate (3.5 mM)(Table-1). Acetate concentra-
tion for treatment was determined based on serum ace-
tate concentration measured by acetate assay in samples 
from the CHOW group. Cell pellets were collected to 
extract total proteins using RIPA buffer.

Bacteriome analysis
The detailed methodology for bacteriome analysis is 
mentioned elsewhere [8, 50]. Briefly, the vendor Cos-
mosID Inc. (Germantown, MD, USA) used fecal pellets 
from all experimental mice for DNA isolation and prepa-
ration of raw reads. The HiSeq X platform was used for 
whole-genome sequencing, and the taxonomic results 
were reviewed for barcoding or contamination issues. 
Bacteriome analysis was completed using the MetaW-
RAP pipeline, and the reads were trimmed, eliminated, 
and assembled using Trim Galore, BMTagger 1.1.0, and 
MegaHit 1.2.9 respectively. The NCBI Bacteria Database 
was used for mapping the reads and producing a list of 
taxa and abundances.

Methods
Histopathology
Formalin-Fixed paraffin-Embedded (FFPE) liver tissues 
were cut into 5 μm thick sections. For histological exami-
nations, liver section slides were deparaffinized using a 
standard protocol.

Immunohistochemistry
Formalin-fixed, paraffin-embedded liver tissue sections 
were deparaffinized using standard laboratory protocol. 
All 5  μm-thick tissue sections were immersed in 100% 

xylene first, followed by a 1:1 solution of xylene and etha-
nol, then 100% ethanol, 95% ethanol, 70% ethanol, and 
50% ethanol in succession, and finally in deionized water 
for 3  min each. Epitope retrieval solution and steamer 
(IHC-World, Woodstock, MD, USA) were used for anti-
gen epitope retrieval of the tissue Sect. 3% H2O2 solution 
was used to block the endogenous peroxidase activity for 
20 min, followed by serum blocking (5% goat serum, 1 h). 
Sections were incubated overnight at 4  °C with primary 
antibodies for CD68, α-SMA, and IL-1β as recommended 
dilutions (1:300 in blocking buffer) in a humidified cham-
ber. All tissue sections were washed with 1X PBS-T 
(PBS + 0.05% Tween 20) 3 times. Species-specific bioti-
nylated secondary antibodies (1:250 in blocking buffer) 
followed by streptavidin-conjugated with horseradish 
peroxidase (1:200 dilution) were used according to the 
manufacturer’s standard protocols. Finally, 3,3 diamino-
benzidine (DAB) (Sigma-Aldrich) was used as a chro-
mogenic substrate and counter-stained with Mayer’s 
hematoxylin (Sigma-Aldrich). Tissue sections were 
washed with 1X PBS-T between the steps. Sections were 
finally mounted in Simpo mount (GBI Laboratories, 
Mukilteo, WA) and observed under a 20X objective using 
an Olympus BX43 microscope (Olympus, America). 
Morphometric analysis was done using CellSens Soft-
ware from Olympus America (Center Valley, PA).

Immunofluorescence and microscopy
Deparaffinization and epitope retrieval procedures of the 
paraffin-embedded liver and small intestine sections were 
carried out in an exactly similar manner as mentioned for 
the immunohistochemistry method. After the epitope 
retrieval process was completed, all tissue sections were 
permeabilized using PBS-Tx (PBS + 0.1% Triton X-100) 
solution for 1 h, followed by blocking with 5% goat serum 
for 1  h. Following the blocking step, the tissue sections 
were probed with primary antibodies against Claudin2, 
Occludin, NLRP3, and ASC2 (1:300 dilution) and kept 
overnight at 4  °C in a humidified chamber. After that, 
species-specific anti-IgG secondary antibodies conju-
gated with Alexa Fluor 488 or 633 from Invitrogen (Rock-
ford, IL, USA) were applied to the Sect. (1:250 dilution). 
Lastly, ProLong Gold antifade reagent with DAPI (Life 
Technologies, Carlsbad, CA, USA) was used to mount 
the tissue sections. All immunofluorescence-stained 

Table 1 Rat Kupffer cells experiment outline
GROUP INHIBITORS ACETATE MC-LR
CONTROL - 1 h at 37 °C - 6 h at 37 °C -
MC - - +
MC + AC - + +
AC - + -
MC + AC + Bafilomycin A1 + + +
MC + AC + GLPG0974 + + +
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images for this study were captured by an Olympus BX63 
microscope (Olympus America, Center Valley, PA, USA) 
using the 40× objective. Analyses of all morphomet-
ric data were performed using CellSens Software from 
Olympus America (Center Valley, PA, USA).

Western blot
Using a 1x RIPA lysis solution containing protease and 
phosphatase inhibitors, proteins were isolated from liver 
samples. The BCA assay kit (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA), was used to measure 
the extracted tissue protein concentration. 1× NuPAGE™ 
LDS Sample Buffer (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) and 10% β-mercaptoethanol were 
added to 40  µg of the extracted protein from each liver 
sample before boiling for 5 min. The liver-extracted pro-
tein samples were subsequently separated using a normal 
SDS-PAGE procedure utilizing Novex 4–12% bis-tris 
gradient gel. The Trans-Blot Turbo transfer system (Bio-
Rad, Hercules, CA, USA) was used to transfer the sepa-
rated protein bands onto a nitrocellulose membrane 
following blocking with 3% bovine serum albumin (BSA) 
for an hour. Blots were incubated with primary antibod-
ies against NLRP3, IL-1β, and β-actin (1:1000 dilution) 
and stored at 4  °C overnight. Compatible species-spe-
cific HRP-conjugated secondary antibodies were applied 
(1:2500 dilution) to the blots after three washes with 1X 
TBS-T (Tris-buffered saline + 0.05% Tween 20) buffer. 
The blots were developed using Pierce ECL Western blot-
ting substrate from Thermo Fisher Scientific, Waltham, 
Massachusetts, USA. Finally, G: Box Chemi XX6 was 
used to capture the photographs of the blots. All densi-
tometric analyses were performed using Image J software 
(NIH, Bethesda, MD, USA).

Acetate assay
Acetate concentration (mM) in the CHOW and MC 
groups of mice was quantified using the EnzyChrom™ 
Acetate Assay Kit from BioAssay Systems (Hayward, CA, 
USA) following the manufacturer’s standard protocol. 
Firstly, 10µL standard and test samples were appropri-
ately diluted using the supplied sample diluent and then 
applied to the designated wells in a clear, flat-bottom, 
96-well plate. The working reagent was freshly prepared 
as per manufacturer’s instructions (90 µL Assay Buffer, 5 
µL Enzyme A, 1 µL Enzyme B, 1 µL Dye Reagent and 1 
µL ATP per well) and applied to each well. The plate was 
then incubated at room temperature for 30 min. Absor-
bance was measured at 570 nm using a microplate reader. 
The acetate concentration was then calculated using the 
standard curve.

Statistical analysis
The GraphPad Prism program (San Diego, CA, USA) was 
used to perform all statistical analyses for this investiga-
tion. For this investigation, all data are presented as the 
mean ± SEM. For intergroup comparison, unpaired t-tests 
(two-tailed tests with equal variance) were used, fol-
lowed by Bonferroni-Dunn post hoc corrections analy-
sis. p ≤ 0.05 was regarded as statistically significant for all 
analyses.

Results
Early life exposure to MC-LR led to an altered gut 
microbiome signature specific to SCFA production in 
adolescence and decreased intestinal acetate production
Previous studies from our research group reported that 
MC-LR exposure in adulthood alters the gut microbiome 
[8, 20, 21]. We wanted to examine the effect of early-life 
exposure to MC-LR on the murine gut microbiome. To 
show that early life MC exposure alters acetate producing 
bacteria and was correlated with intestinal acetate levels, 
we performed next generation sequencing of fecal pellets 
and intestinal content of the host. A detailed bacteriome 
profile was obtained and analyzed.

We observed that there was a decrease in α-diversity 
indices of the gut microbiome present in fecal pellets 
collected from the MC group compared to the CHOW 
group. However, this decrease was not statistically signif-
icant (Fig. 1A and B). As a representation of β-diversity, 
Principal Co-ordinate Analysis by Bray – Curtis Method 
was performed. Both CHOW and MC groups formed 
separate clusters on the β-diversity plot indicating the 
presence of distinct bacteriome profiles between the two 
groups (Fig. 1C).

Next, we wanted to determine whether some bacterial 
families were particularly affected by MC-LR exposure 
early in life. At the family level, the bacteria belong-
ing to the families Bacteroidaceae, Lachnospiraceae, 
Eggerthellaceae, Ruminococcaceae, Oscillospiraceae, 
Firmicutes_u_f, Clostridiaceae, Peptostreptococcaceae, 
Eubacteriaceae, Enterococcaceae, Turicibacteraceae, and 
Barnesiellaceae were decreased and the ones belonging 
to families Lactobacillaceae, Akkermansiaceae, Muri-
bacullaceae, Bifidobacteriaceae, Burkholderiales_u_f, 
Sutterallaceae, Erysipelotrichaceae, and Staphylococca-
ceae increased (Fig. 1D). Out of the 12 bacterial families 
whose relative abundances decreased in MC group, the 
families Ruminococcaceae (p = 0.03, Fig.  2A) and Bacte-
roidaceae (p = 0.03, Fig. 2B) are particularly important as 
they are major producers of SCFA in the gut.

To determine which species of bacteria were differen-
tially enriched between the CHOW and MC groups, we 
looked at relative abundances of key SCFA-producing 
bacteria in both CHOW and MC groups respectively. 
We observed that there was a significant decrease in 
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the relative abundance of Bacteroides faecis (p = 0.028, 
Fig. 2C) and Bacteroides_u_s (p = 0.03, Fig. 2D) in the MC 
group. Both Bacteroides faecis and Bacteroides_u_s bac-
teria belong to the phylum Bacteroidetes and are essential 
SCFA producers that play varied roles in the gut ecosys-
tem like protection from invading pathogens and break-
ing down complex carbohydrates like glycans to provide 
nutrition for other gut commensals [12]. In humans dur-
ing infancy (equivalent to 4 to 8 weeks in mice) there is 
an increase in the population of bacteria belonging to the 
family Bacteroidaceae due to increased consumption of 
fibers and acetate is the major SCFA produced during 
this time. Bacteroides and SCFA acetate is important for 

the establishment of a healthy gut microbiome in adult-
hood [12]. Therefore, the decreased relative abundance of 
Bacteroides due to early-life MC exposure can lead to dis-
turbed intestinal homeostasis which might be persistent 
in adulthood.

Next, we wanted to examine whether the decreased 
abundance of important SCFA-producing bacterial fami-
lies and species led to a change in intestinal acetate pro-
duction. Indeed, we detected a significant decrease in 
the acetate concentration in the intestinal lumen in the 
MC group compared to the CHOW group as measured 
by acetate assay (p = 0.002, Fig.  2E). This depletion in 
acetate concentration in the intestinal lumen also led to 

Fig. 1 Early life exposure to MC-LR in mice lead to an altered microbiome signature in adolescence. (A) Box plot indicating α- diversity index – Shannon 
diversity of CHOW (mice treated with vehicle only) and MC groups (mice treated with 5 µg/kg MC-LR via oral gavage at 4 weeks of age). (B) Box plot indi-
cating α- diversity index – Simpson diversity of CHOW and MC groups. (C) Bray–Curtis β-diversity plot in both the CHOW and MC groups. (D) The relative 
abundance of the gut bacteriome at the family level for CHOW and MC groups is presented by group average
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Fig. 2 Bar graphs showing the percentage relative abundance of significantly altered bacteria, (A) Ruminococcaceae, (B) Bacteroidaceae, (C) Bacteroides 
faecis, and (D) Bacteroides_u_s. (E) Intestinal and (F) Serum acetate levels (in mM) of both CHOW and MC mice groups are represented as bar graphs 
(ns – non significant, * p < 0.05, ** p < 0.01, *** p < 0.001). Data were represented as mean ± SEM and statistical significance was tested using unpaired t-
test between the two groups followed by Bonferroni–Dunn post hoc corrections. Correlation plot between intestinal acetate concentration and relative 
abundances of the bacterial families (G) Ruminococcaceae and (H) Bacteroidaceae and bacterial species (I) Bacteroides faecis and (J) Bacteroides_u_s in 
the gut microbiome
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decreased uptake of acetate in circulation reflected by a 
decreased serum acetate concentration in the MC group 
compared to the CHOW group (p = 0.001, Fig. 2F). Intes-
tinal acetate concentration also correlated positively with 
the relative abundance of Ruminococcaceae (Fig.  2G), 
Bacteroidaceae (Fig.  2H), Bacteroides Faecis (Fig.  2I) 
and Bacteroides spp (Fig. 2J) suggesting a decrease in the 
abundance of acetate producing bacteria led to a decrease 
in the acetate concentration in the intestinal lumen.

Therefore, early-life exposure to MC-LR in juvenile 
mice led to gut dysbiosis, and decreased abundance of 
acetate-producing gut residents which led to depleted 
acetate production in the intestinal lumen.

Gut dysbiosis and the consequent decrease in acetate 
production in the intestinal lumen were associated with 
poor gut barrier integrity
A healthy gut microbiome and its metabolites are neces-
sary for maintaining gut barrier integrity and prevent-
ing the translocation of bacterial cells, metabolites, and 
toxins into circulation [14, 37, 38]. Claudin 2 and Occlu-
din are tight junction proteins that are necessary for the 
maintenance of gut epithelial barrier integrity.

We wanted to evaluate the effect of early life expo-
sure to MC-LR on gut barrier integrity in mice and we 
observed a marked alteration in the protein levels of 
Claudin 2 and Occludin by immunofluorescence method. 
Morphometric analysis of immunostained small intestine 
sections revealed that early life exposure to MC-LR led to 
a significant increase in immunoreactivity of Claudin 2 in 
the MC group compared to the CHOW group (p < 0.001 
Fig.  3A and C) and a corresponding decrease in immu-
noreactivity of Occludin in the CHOW group compared 
to the MC group (p < 0.001 Fig. 3B and D). However, we 
also observed that the immunoreactivity of Claudin 2 
was decreased in the MC + AC group compared to the 
MC group (p = 0.01 Fig. 3A and C). Similarly, the immu-
noreactivity of Occludin increased in the MC + AC group 
compared to the MC group (p = 0.02 Fig. 3B and D). Thus, 
acetate supplementation prevented the dysregulated 
expression of tight junction proteins leading to restored 
gut barrier integrity.

Further, the immunoreactivities of important tight 
junction proteins Claudin 2 and Occludin were associ-
ated with luminal acetate concentration. Luminal ace-
tate concentration negatively correlated with Claudin 
2 immunoreactivity (Pearson’s R = – 1.942, p < 0.001)
(Fig.  3E) whereas occludin immunoreactivity positively 
correlated with luminal acetate concentration (Pearson’s 
R = 0.67, p < 0.001). (Fig. 3F)

Acetate supplementation decreased hepatic inflammation 
induced due to early-life MC-LR exposure
A leaky gut leads to increased translocation of PAMPs 
and DAMPs in circulation as previously shown by 
research from our research group and other groups. 
Increased circulatory levels of various pro-inflammatory 
molecules cause hepatic inflammation [21, 51, 52]. As 
previously published by our research group, early life 
exposure to MC-LR led to MASLD-like inflammation 
characterized by Kupffer cell and Stellate cell activation 
[23]. The protein CD68 (Cluster of Differentiation 68) is 
highly expressed by osteoclasts, monocytic phagocytes, 
circulating macrophages, and tissue macrophages such 
as Kupffer cells and microglia [53]. α – Smooth muscle 
actin (α-SMA) is a marker for the activation of hepatic 
stellate cells. A subpopulation of activated fibrogenic cells 
like myofibroblasts and hepatic stellate cells, which are 
regarded as significant effector cells of tissue fibrogen-
esis, are identified by the marker α -SMA [54].

Our current findings corroborated with our previ-
ously published results. Immunoreactivity of CD68, a 
marker for activation of Kupffer cells, was significantly 
higher in the MC group compared to the CHOW group 
as measured by immunohistochemical analysis (p < 0.001, 
Fig. 4A and B). Similarly, immunoreactivity of α-SMA, a 
marker for activation of hepatic stellate cells, was signifi-
cantly higher in the MC group compared to the CHOW 
group as measured by immunohistochemical analysis 
(p = 0.005, Fig.  4A and D). The immunoreactivities for 
both CD68 and α-SMA negatively correlated with serum 
acetate concentration with Pearson’s R = – 0.73 and – 
6.61 respectively (p = 0.054 and p = 0.002 respectively, 
Fig. 4C and E).

Acetate supplementation in the MC + AC group ame-
liorated hepatic inflammatory pathology seen in the MC 
group. Immunoreactivity against CD68 was significantly 
lower in liver tissue from mice belonging to the MC + AC 
group compared to the MC group (p < 0.001, Fig. 4A and 
B). Similarly, immunoreactivity against α-SMA was sig-
nificantly lower in liver tissue from mice belonging to the 
MC + AC group compared to the MC group (p < 0.001, 
Fig. 4A and D). This indicated that acetate supplementa-
tion in mice lowered the activation of both Kupffer cells 
and hepatic stellate cells due to early-life MC exposure.

Acetate supplementation prevented NLRP3 inflammasome 
activation in response to early-life MC-LR exposure by 
downregulating NLRP3 protein levels
Previous research from our research group has dem-
onstrated that early-life exposure to MC-LR led to the 
development of MASLD and this impact was absent in 
mice lacking the Nlrp3 gene [23]. Furthermore, we have 
previously reported that dysbiosis related to MASLD-
like conditions after exposure to MC-LR is caused by the 
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Fig. 3 Representative immunofluorescence images of (A) Claudin-2 and (B) Occludin immunoreactivity (green) from CHOW, MC, MC + AC and AC only 
groups. Morphometric analysis (calculated as %ROI) of (C) Claudin-2, and (D) Occludin immunoreactivity where Y-axis represents % positive immunoreac-
tive area (% ROI) (n = 3; mean value taken from three separate microscopic fields). Data were represented as mean ± SEM and statistical significance was 
tested using unpaired t-test between the two groups (ns – non significant, * p < 0.05, ** p < 0.01, *** p < 0.001), followed by Bonferroni Dunn Post hoc 
corrections. Correlation plot between intestinal acetate concentration and intestinal (E) Claudin-2, and (F) Occludin levels
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Fig. 4 Representative immunohistochemistry images of (A) CD68 and (B) α-SMA immunoreactivity from CHOW, MC, MC + AC and AC only groups. 
Morphometric analysis (calculated as %ROI) of (C) CD68, and (D) α-SMA immunoreactivity where Y-axis represents % positive immunoreactive area (% 
ROI) (n = 3; mean value taken from three separate microscopic fields). Data were represented as mean ± SEM and statistical significance was tested using 
unpaired t-test between the two groups (ns – non significant, * p < 0.05, ** p < 0.01, *** p < 0.001), followed by Bonferroni Dunn Post hoc corrections. Cor-
relation plot between serum acetate concentration and liver (E) CD68, and (F) α-SMA levels
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activation of the NLRP3 inflammasome [21]. Therefore, 
NLRP3 inflammasome activation is crucial to MC-LR-
induced MASLD caused by early-life gut dysbiosis [55].

Toevaluate whether early-life exposure to MC-LR led 
to NLRP3 inflammasome activation and if acetate treat-
ment prevented this activation, we performed co-immu-
nostaining using antibodies against NLRP3 and ASC2 
in liver sections from the four experimental groups to 
detect the formation of the NLRP3 inflammasome. We 
also probed for release of IL-1β using immunohisto-
chemistry as it is an effect downstream to NLRP3 inflam-
masome activation.

We observed a marked increase in co-localization of 
NLRP3 and ASC2 in the MC group compared to the 

CHOW group (p < 0.001, Fig. 5A and C). There was a cor-
responding increase in IL-1β immunoreactivity in the 
MC group compared to the CHOW group (p < 0.001, 
Fig. 5B and E). The increase in co-localization of NLRP3 
and ASC2 signified an increased inflammasome forma-
tion and activation in the MC group compared to the 
CHOW group. This increase in inflammasome activation 
negatively correlated with serum acetate concentrations 
(Pearson’s R = -15.98, p = 0.0001, Fig.  5D). Co-localiza-
tion of NLRP3 and ASC2 was decreased in the acetate-
supplemented MC + AC group as compared to MC only 
group (p = 0.001, Fig. 5A and C). There was a correspond-
ing decrease in IL-1β immunoreactivity in the MC + AC 

Fig. 5 Representative (A) immunofluorescence images showing NLRP3 (red) and ASC2 (green) co-localization events and (B) immunohistochemistry 
images of IL-1β immunoreactivity in the liver sections from CHOW, MC, MC + AC and AC only groups. For immunofluorescence images, the liver sections 
were counterstained with DAPI (blue); all the images were captured in 40× magnification, and immunoreactivity was indicated by white arrows. For 
immunohistochemistry, all the images were captured in 20× magnification, and immunoreactivity was indicated by red arrows. Morphometric analysis 
(calculated as %ROI) of (C) NLRP3 and ASC2 co-localization events, and (E) IL-1β immunoreactivity where Y-axis represents % positive immunoreactive 
area (% ROI) (n = 3; mean value taken from three separate microscopic fields). Data were represented as mean ± SEM and statistical significance was tested 
using unpaired t-test between the two groups (ns – non significant, * p < 0.05, ** p < 0.01, *** p < 0.001), followed by Bonferroni–Dunn post hoc correc-
tions. Correlation plot between serum acetate concentration and liver (D) NLRP3-ASC2 co-localization events
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group when compared to the MC group (p < 0.001, 
Fig. 5B and E).

Thus, acetate supplementation indeed decreased the 
activation of NLRP3 inflammasome and consequent 
release of the pro-inflammatory cytokine IL-1β in mice 
that were exposed to MC-LR in early life.

Acetate supplementation in the microcystin challenge in 
vivo and in primary kupfferffer cells leads to reduced levels 
of NLRP3 protein in a GPR43 dependent manner
First, we estimated the NLRP3 protein expression in the 
livers of the experimental mice using the Western Blot 
method (NLRP3 protein expression was normalized 
against the expression of β-actin from the same sam-
ple). We observed that MC exposure led to an increase 
in the NLRP3 protein levels compared to the CHOW 
group (p = 0.004, Fig. 6A and B). Acetate supplementation 

significantly decreased levels of NLRP3 protein (p = 0.003, 
Fig. 6A and B).

Previous literature indicates that acetate treatment in 
bone marrow-derived macrophages leads to ubiquitin-
mediated NLRP3 protein degradation via GPR43 signal-
ing [43]. To confirm the mechanism of whether acetate 
supplementation in the presence of MC-LR caused 
NLRP3 autophagy in a GPR43-dependent manner, we 
designed an in vitro study using rat Kupffer cells. In this 
study, MC-LR primed rat Kupffer cells (MC) were treated 
with acetate (MC + AC) in the presence of either GPR43 
antagonist GLPG0974 (MC + AC + GLPG) or autophagy 
inhibitor Bafilomycin A1 (MC + AC + BAF). Chow group 
was represented by “only cells” control.

We observed that MC-LR challenge in primary rat 
Kupffer cells (MC) led to an increase in protein lev-
els of NLRP3 (p < 0.001, Fig.  6C and D) and acetate 

Fig. 6 (A) Western blot images of NLRP3 and β-actin protein expression levels were obtained from liver tissue extracts from CHOW, MC, MC + AC and AC 
only groups. Densitometry analyses of (B) NLRP3 protein expression normalized against β-actin expression, (C) Western blot images of NLRP3, IL-1β and 
β-actin protein expression levels were obtained from protein extracted from rat Kupffer cells belonging to Control, MC, MC + AC, AC only, MC + AC + Bafilo-
mycin, and MC + AC + GLPG0974 groups. Densitometry analyses of (D) NLRP3 and (E) IL-1β protein expression normalized against β-actin expression. Data 
were represented as mean ± SEM and statistical significance was tested using unpaired t-test between the two groups (ns – non significant, * p < 0.05, ** 
p < 0.01, *** p < 0.001), followed by Bonferroni– Dunn post hoc corrections. Each protein represented as horizontal rows is from the same gel. For Fig. 6A 
and C, each row is bordered and separated from other rows to indicate that each protein was probed separately either on a fresh blot or on the same 
blot after stripping them first. Images were acquired using the Biorad ChemiDoc Imaging system with a standard automated exposure and SuperSignal™ 
West Pico PLUS Chemiluminescent Substrate. 6A and 6C are separate experiments and exposure times for imaging were different. Full length images for 
6A and 6C acquired are included as supplementary information
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supplementation in the presence of MC-LR challenge 
(MC + AC group) had decreased protein levels of NLRP3 
(p < 0.001, Fig.  6C and D). There was a corresponding 
increase in protein levels of IL-1β in MC-treated cells 
(p < 0.001) and a corresponding decrease in the IL-1β lev-
els in acetate-supplemented cells (p < 0.001, Fig.  6C and 
E). These results indicated that MC-LR exposure led to 
priming of NLRP3 inflammasome and acetate treatment 
decreased the protein levels of NLRP3 after treatment 
with MC-LR.

To confirm that the decreased protein levels of NLRP3 
protein due to acetate treatment occurred by binding of 
acetate to its receptor GPR43, we used a GPR43 antag-
onist – GLPG0974. We expected that the prevention of 
acetate binding to its receptor GPR43 would reverse the 
effect acetate had on the protein levels of NLRP3 and its 
downstream molecule IL-1β. As expected, we observed 
an increase in protein levels NLRP3 (p < 0.001, Fig.  6C 
and D) and IL-1β (p = 0.011, Fig. 6C and E) in the pres-
ence of GPR43 receptor antagonist compared to the 
MC + AC group. This confirmed that acetate in the pres-
ence of MC-LR challenge regulated NLRP3 protein levels 
via its receptor GPR43.

To confirm whether acetate supplementation caused 
NLRP3 protein degradation via autophagy, we used the 
autophagy inhibitor Bafilomycin A1 and expected an 
increase in NLRP3 and IL-1β protein levels in the Bafilo-
mycin A1 treated group compared to MC + AC group. 
We did observe an increase in IL-1β protein levels in 
MC + AC + BAF group in comparison to the MC + AC 
group (p < 0.001, Fig.  6C and E). However, we observed 
a significant decrease in NLRP3 protein levels in Bafilo-
mycin A1 treated group in comparison to the MC + AC 
group (p < 0.001, Fig. 6C and D).

To summarize, MC-LR treatment led to increased pro-
tein levels of NLRP3 and IL-1β which were reversed by 
acetate treatment both in vivo in the liver and in vitro in 
Kupffer cells. Acetate binding to GPR43 was necessary 
to decrease protein levels of NLRP3 protein that were 
increased by MC-LR exposure. Inhibition of autophagy 
led to a further decrease in NLRP3 protein in vitro. How-
ever, an opposite effect was observed in the case of IL-1β.

Discussion
Previous studies from our research group and others 
have shown that exposure to MC-LR in adulthood and in 
early – life leads to gut dysbiosis [8, 21]. We also found 

Fig. 7 Graphical representation of the mechanistic endpoints describing the role acetate in early life microcystin exposure. This figure was prepared by 
authors for this publication using BioRender Software
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that there was a marked decrease in species richness and 
abundance due to early life exposure to MC-LR using 
Shannon and Simpson α-diversity indices. Decreased 
α-diversity is a feature of metabolic conditions like 
MASLD, type II diabetes, obesity, inflammatory bowel 
disease, etc. [21, 23, 56–58]. Upon performing Principal 
Component Analysis using the Bray – Curtis dissimilarity 
index we observed that the two groups formed separate 
clusters indicating differences in microbiome signatures 
between CHOW and MC-treated groups. This indicates 
that early life exposure to MC-LR leads to a change in 
the gut microbiome pattern in adolescence. At the fam-
ily level, this change constituted decreased abundances 
of Ruminococcaceae and Bacteroidaceae. Ruminococ-
caceae are a group of strictly anaerobic bacteria that are 
important producers of SCFA, thus are vital for overall 
gut health. A decreased abundance of SCFA-producing 
bacteria has been associated with inflammatory bowel 
diseases like Crohn’s disease and ulcerative colitis [59, 
60]. Bacteroidaceae is an important family of bacteria 
in the gut microbiome that are established early in life 
[12]. We observed a decrease in the relative abundance 
of bacteria belonging to the family Bacteroidaceae par-
ticularly bacteria belonging to the genus Bacteroides. The 
genomes of bacteria belonging to the genus Bacteroides 
code for a vast variety of enzymes that breakdown com-
plex polysaccharides. In humans increased abundance of 
Bacteroides during infancy (approximately 4–8 weeks age 
in mice) is due to increased consumption of food rich in 
fibers after weaning. Bacteroides spp. are “providers” of 
the gut ecosystem as they are major producers of SCFA 
during childhood [61]. Acetate is the most abundant 
SCFA produced by gut bacteria during childhood and is 
important for establishing a healthy and stable gut micro-
biome [61–63].

Since, MC-LR oral exposure immediately after weaning 
affects the abundance, and richness of bacterial species 
and causes major alteration in important SCFA produc-
ing bacteria it hinders the establishment of a balanced 
and healthy gut microbiome in adulthood. This led to 
decreased production of acetate in the gut as measured 
by acetate assay. As seen in our study, the consequence 
of this alteration in gut microbiome and its metabolic 
activities is gut leaching evident from the disruption of 
the protein levels of tight junction proteins Claudin 2 
and Occludin. Moreover, this dysregulation in the pro-
tein levels of Claudin 2 and Occludin is associated with 
luminal acetate concentration in addition to the positive 
correlation of gut acetate concentrations with abundance 
of acetate producing species. These results corroborate 
with previous studies that have described the vital role 
of SCFAs in maintaining the gut epithelial barrier [64]. 
However, the mechanism via which acetate modulates 
the levels of epithelial tight junction proteins is unknown.

Our research group has previously shown that expo-
sure to MC-LR in early life leads to the development of 
a MASLD like condition characterized by increased acti-
vation of Kupffer cells, hepatic stellate cells and release 
of pro-inflammatory cytokines like IL-1β and TNF-α.
Importantly, this potentiation of MASLD like condition 
was absent in NLRP3 KO mice [23] indicating the cen-
tral role of NLRP3 in this scenario [23]. The results we 
obtained also corroborated our previous findings. In our 
study, we noted that, acetate supplementation prevented 
the increased activation of Kupffer cells, hepatic stel-
late cells and release of pro-inflammatory cytokines like 
IL-1β. Furthermore, acetate supplementation decreased 
NLRP3 inflammasome assembly and activation. Thus, 
providing a basis for the therapeutic potential of target-
ing the NLRP3 inflammasome in the mitigation of toxin 
associated inflammatory liver diseases. It has been pre-
viously shown that acetate upon binding with its recep-
tor GPR43 can cause NLRP3 protein degradation thereby 
attenuating NLRP3 inflammasome activation in a Ca2+ 
dependent manner [43].

We wanted to elucidate the mechanism by which ace-
tate caused attenuation of NLRP3 inflammasome acti-
vation following exposure to MC-LR. We observed that 
protein levels of NLRP3 in the liver of mice that were 
exposed to MC-LR received acetate supplementation 
were lower than those from mice that were exposed to 
MC-LR without acetate supplementation. The protein 
level of NLRP3 in mice supplemented with acetate was 
not significantly different from that in unexposed mice 
i.e., the CHOW group as well as the mice that received 
only acetate supplementation i.e., the AC group. We 
theorized based on a literature review that the decreased 
NLRP3 levels in MC + AC group was due to acetate bind-
ing its receptor GPR43 and its downstream effects [43]. 
So, we performed the in vitro experiments using rat 
primary Kupffer cells where we supplemented the cell 
culture medium with acetate and treated the mice to 
MC-LR. One of the test groups were first treated with a 
GPR43 antagonist before acetate supplementation. It was 
observed that the levels of NLRP3 protein were elevated 
in the presence of GPR43 antagonist suggesting that 
binding of acetate to its receptor GPR43 is essential for 
reducing NLRP3 protein levels in MC treated cells. Fur-
ther, the protein levels of IL-1β were also elevated sug-
gesting that acetate – GPR43 signaling was important for 
NLRP3 inflammasome assembly and downstream IL-1β 
release.

Next, based on literature review we hypothesized that 
acetate – GPR43 signaling led to NLRP3 protein degra-
dation by autophagy when treated with MC-LR [43]. So, 
we used Bafilomycin A1 an inhibitor of autophagy before 
supplementing primary rat Kupffer cells with acetate 
followed by exposure to MC-LR. We observed that the 
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protein levels of IL-1β elevated as expected. Surprisingly, 
the protein levels of NLRP3 further decreased when the 
cells were treated with an inhibitor of autophagy.

NLRP3 protein is post-translationally regulated in 
many ways. This includes inactivation by ubiquitina-
tion, ubiquitination-mediated autophagy, ubiquitination 
mediated proteasomal degradation, phosphorylation, 
acetylation, nitrosylation, and SUMOylation [65]. NLRP3 
protein degradation can occur via autophagy triggered 
by K63 polyubiquitination of NLRP3 protein and sub-
sequent interaction with autophagy adaptor p62 [66] or 
via proteasomal degradation triggered by K63 and K48 
linked ubiquitination by E3 ubiquitin ligases ring finger 
protein RNF125 and Casitas B-lineage lymphoma proto-
oncogene-b Cbl-b [67]. Since the Bafilomycin A1 inhibits 
autophagy [68] and not proteasomal degradation, acetate 
may cause NLRP3 protein degradation via proteasomal 
degradation and not autophagy. Further, experiments 
using inhibitors of E3 ubiquitin ligases RNF125 and 
Cbl-b are necessary to verify this possible mechanism. 
Also, acetate – GPR43 signaling may prevent the priming 
step of NLRP3 inflammasome activation that includes 
the increased mRNA expression of NLRP3, pro-IL-1β 
and pro-IL-18 in response to TLR4 activation or TNF 
signaling [69]. Further, studies need to be carried out to 
link acetate – GPR43 signaling with NLRP3 inflamma-
some regulation and degradation.

In conclusion, this study highlights the importance of 
a healthy gut microbiome and its metabolites like SCFAs 
in alleviating inflammation caused due to exposure to 
cyanotoxin MC-LR. This study along with previous pub-
lications establishes the central role of NLRP3 inflam-
masome priming and activation in promoting hepatic 
inflammation due to exposure to MC-LR in early life. It 
draws attention towards gut dysbiosis and NLRP3 inflam-
masome as therapeutic targets for treating environ-
ment-linked fatty liver diseases and other inflammatory 
disorders. Lastly, it tries to elucidate the mechanism by 
which gut metabolites like SCFA particularly acetate can 
modulate inflammation via the Gut – Liver Axis (Fig. 7).
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