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Bupivacaine inhibits a small conductance
calcium‐activated potassium type 2
channel in human embryonic kidney 293
cells
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Abstract

Background: Bupivacaine blocks many ion channels in the heart muscle, causing severe cardiotoxicity. Small-
conductance calcium-activated potassium type 2 channels (SK2 channels) are widely distributed in the heart cells
and are involved in relevant physiological functions. However, whether bupivacaine can inhibit SK2 channels is still
unclear. This study investigated the effect of bupivacaine on SK2 channels.

Methods: The SK2 channel gene was transfected into human embryonic kidney 293 cells (HEK-293 cells) with
Lipofectamine 2000. The whole-cell patch-clamp technique was used to examine the effect of bupivacaine on SK2
channels. The concentration–response relationship of bupivacaine for inhibiting SK2 currents (0 mV) was fitted to a
Hill equation, and the half-maximal inhibitory concentration (IC50) value was determined.

Results: Bupivacaine inhibited the SK2 channels reversibly in a dose-dependent manner. The IC50 value of
bupivacaine, ropivacaine, and lidocaine on SK2 currents was 16.5, 46.5, and 77.8µM, respectively. The degree of SK2
current inhibition by bupivacaine depended on the intracellular concentration of free calcium.

Conclusions: The results of this study suggested the inhibitory effect of bupivacaine on SK2 channels. Future
studies should explore the effects of SK2 on bupivacaine cardiotoxicity.
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Background
Local anesthetics (LAs), such as bupivacaine, ropiva-
caine, and lidocaine, are often used for regional
anesthesia and analgesia. Their cardiotoxicity also differs
due to their different chemical structures: bupivacaine >
ropivacaine > lidocaine. Bupivacaine is one of the long-
acting, lipophilic LAs. It is used for analgesia periopera-
tively due to its high analgesic efficacy and long-lasting

effect. However, accidental delivery or excessive absorption
of bupivacaine into blood circulation may cause severe
arrhythmia or even cardiac arrest [1–3]. Statistical estimates
showed that the incidence of LA-induced toxicity in the
peripheral nerve block was 7.5–20/10,000 [4, 5]. However,
the mechanism of bupivacaine cardiotoxicity has not been
fully elucidated. Bupivacaine can block sodium [6, 7], L-
calcium [8, 9], and potassium channels [10, 11], which may
be involved in bupivacaine cardiotoxicity.
Calcium-activated potassium channels are calcium-

dependent channels triggered by intracellular calcium [12].
In humanṣ, calcium-activated potassium channels can be di-
vided into three categories: large-conductance channels,
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intermediate-conductance channels, and small-conductance
channels. Small-conductance calcium-activated potassium
type 2 channels (SK2 channels) are involved in hyperpolari-
zation after the action potential. These channels function in
the atria [13], ventricles [13], atrioventricular nodes [14],
and Purkinje cells [15], which play important roles in cardiac
conduction. The dysfunction of SK2 channels may lead to
atrial or ventricular arrhythmia due to the important role of
these channels in regulating the action potential [3, 16]. SK2
protein expression and SK2 currents decreased in 22 pa-
tients with chronic atrial fibrillation compared with patients
with sinus rhythm [17]. The effect of bupivacaine on SK2
channels was not reported thus far. It was hypothesized that
bupivacaine directly suppressed SK2 currents.
In this study, HEK 293 cells were transfected with the

SK2 gene. The whole-cell patch-clamp technique was
used to demonstrate that bupivacaine could inhibit SK2
currents. The aim of the study was to demonstrate the
ability of bupivacaine to inhibit SK2 channels and the
effect of calcium concentration on its blockade.

Methods
Cell line culture and gene transfection
HEK293 cells were all purchased from the Institute of
Life Sciences of the Chinese Academy of Sciences
(China). After harvesting using 0.25 % trypsin, the cell
lines were grown at 37 °C in the presence of 5 % CO2

and 95 % air and cultured in Dulbecco’s modified Eagle’s
medium (DMEM) mixed with 10 % fetal bovine serum
(FBS), 75 µg/mL streptomycin, and 75 U/mL penicillin.
In addition, the aseptic principle was strictly observed
during the experimental operation. Before transfection,
the cells were added to a plate with a density of about
2 × 105 cells/cm2. Transfection was performed when
85 % confluence was reached. The plasmids (pCDNA3/
rSK Ca2) used in this study were obtained from OriGene
(USA). All the transfections were performed with Lipo-
fectamine 2000 (Invitrogen, USA) following the manu-
facturer’s protocols. As described previously, stable
expression of the SK2 gene was established in HEK293
cells (the cells are herein referred to as SK2 cells). Before
the patch-clamp experiment, SK2 cells were seeded for
about 24 h in the glass cover.

Drugs and solutions
Trypsin, FBS, penicillin, streptomycin, and DMEM were
all obtained from Gibco Invitrogen Corp. (USA). Bupiva-
caine, ropivacaine, and lidocaine were purchased from
Sigma–Aldrich (USA). The Tyrode’s solution comprised
the following: NaCl, 137mM; KCl, 5.4mM, MgCl2,
1.8mM; HEPES, 10mM; and glucose, 10mM; pH was
maintained at 7.4 with NaOH. The pipette solution com-
prised the following: MgCl2, 1.15mM; potassium

gluconate, 144mM; and CaCl2, 0.25mM/0.5mM/1.0mM);
pH was maintained at 7.2 with KOH.

Patch‐clamp experiments
All experiments were conducted using the whole-cell
patch-clamp technique. The coverslip containing SK2
cells was placed under an inverted Olympus microscope
(IX70, Japan) on the cell chamber. The solutions were
added to the reservoirs from the superfusion system
(DADVC-8PP, ALA SCIENTIFIC, USA). The DAD-VC
systems have a Micromanifold comprising eight tubes of
polyamide-coated quartz glass of 100 μm ID. The Micro-
manifold enables up to eight solutions from the reser-
voirs to flow into a small common space of less than 1
µL. The Micromanifold with a micromanipulator can be
easily moved around the cell preparation and pointed at
the target cell.
An EPC-10 amplifier (HEKA, Germany) was used for

the whole-cell patch-clamp technique. A glass electrode
with 1.2-mm outer diameter was pulled out with a mi-
croelectrode puller (P-97, SUTTER, USA) to achieve a
resistance of 1.5–3.0 MΩ after adding the pipette solu-
tion. Under the microscope, SK2 cells with smooth cell
membranes were picked up to record the currents. After
gigaseal formation, negative pressure was introduced to
break the SK2 cell membrane. Voltage stimulation and
data recording were performed using the Pulse 8.0 soft-
ware (HEKA, Germany). All experiments were per-
formed at 36 °C. SK2 cells could produce stable currents
at 0 mV. Therefore, currents at 0 mV were used for
comparisons in the following experiments. SK2 cells
were recorded for currents in three different phases:
baseline, inhibition, and washout. The baseline phase in-
volved the perfusion of SK2 cells with Tyrode’s solution.
The inhibition phase involved the perfusion of SK2 cells
with Tyrode’s solution containing LAs. The washout
phase involved the replacement of LA-containing Tyrode’s
solution with normal Tyrode’s solution. The currents re-
corded in the three phases were defined as Currentbaseline,
Currentinhibition, and Currentwashout. The normalization
current was represented by Currentinhibition/Currentbaseline.
The normalization inhibition was calculated as (Currentba-
seline − Currentinhibition )/Currentbaseline.

Statistical analysis
The SPSS software (version 19.0, IL, USA) was used for
data analysis. The normality of data was tested using the
Shapiro–Wilk test, and the normally distributed data
were expressed as the mean ± standard deviation. Differ-
ences between the two groups were assessed using the
Student t test, and ANOVA was used for comparisons of
multiple groups. A P value < 0.05 indicated a statistically
significant difference.
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The relationship between local anesthetic concen-
tration and its inhibitory effect on SK2 currents was
fitted in a nonlinear fashion using GraphPad Prism
5.0 software (GraphPad, CA, USA). The equation
was Y = Bottom + (Top − Bottom)/(1 + 10((LogIC50
−X)*HillSlope)), where HillSlope represents the steep-
ness of the family of curves, Top and Bottom repre-
sent plateaus in the units of the y-axis, X represents
the logarithm of concentrations of LAs (0, 0.5, 1, 2,
2.5, and 3), and Y represents the normalization
current. Normalization current was calculated as
Currentinhibition/Currentbaseline.

Results
Concentration–response relationship of bupivacaine,
ropivacaine, and lidocaine on the inhibition of SK2
currents
HEK 293 cells transfected with the SK2 gene (trans-
fected cells were named SK2 cells) produced representa-
tive current tracings. The SK2 current was inhibited by
local anesthetics in SK2 cells (Fig. 1 A). The half-
maximal inhibitory concentration (IC50) value for bupi-
vacaine was 16.5 µmol/L (95 % CI: 12.46–21.83; Fig. 1B).
The IC50 value for ropivacaine and lidocaine was 46.5
µmol/L (95 % CI: 31.37–69.03) and 77.8 µmol/L (95 %
CI: 55.66–108.7), respectively (Fig. 1 C and 1D).

Inhibition of SK2 currents with LAs was reversible
Next, the study explored whether the inhibitory effect of
bupivacaine was reversible. In this part, SK2 currents
from SK2 cells were recorded during exposure to 1µM,
10µM, and 100µM bupivacaine. Consequently, SK2 cur-
rents measured at 0-mV membrane potential were com-
pletely reversed to the baseline value after washout (P >
0.05; Fig. 2).

Modulation of the inhibitory effect of bupivacaine by
calcium concentration
The opening probability of the SK2 channel is related to
the intracellular calcium concentration. The present
study tested whether the inhibitory effect of bupivacaine
on SK2 currents were affected by calcium concentration.
Figure 3 A shows traces of the SK2 currents induced in
the presence of intracellular free calcium concentrations
of 0.25, 0.50, and 1.0µM. The results showed an increase
in the SK2 currents, as the calcium concentration in-
creased and reached 1.0µM (P < 0.05). Figure 3B shows
that bupivacaine inhibited SK2 currents to different ex-
tents in the presence of different intrapipette concentra-
tions of free calcium. The results showed that SK2
currents were inhibited the least at a calcium concentra-
tion of 1.0µM (P < 0.05).

Fig. 1 Concentration-dependent inhibitory effects of bupivacaine, ropivacaine, and lidocaine on SK2 currents. a The SK2 current was inhibited by
local anesthetics and apamin in an SK2 cell. b, c, and d Dose-dependent effects of bupivacaine in terms of inhibiting SK2 currents (0 mV) were
fitted to the Hill equation to obtain the IC50 value of bupivacaine, ropivacaine, and lidocaine, respectively. The equation was Y = Bottom + (Top
− Bottom)/(1 + 10((LogIC50-X)*HillSlope)). The pipette solution contained 1μM free calcium
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Discussion
The results of this study were as follows: (1) Bupivacaine
could reversibly inhibit the SK2 channel in a dose-
dependent manner. (2) The IC50 value of bupivacaine,
ropivacaine, and lidocaine for inhibiting SK2 was
16.5µM, 46.5µM, and 77.8µM, respectively. (3) The
intracellular calcium concentration could influence the
inhibitory effect of bupivacaine on SK2 currents.
After transfection with the SK2 gene, SK2 cells pro-

duced stable SK2 currents, which could be inhibited by
apamin. Therefore, the SK2 current is also called
apamin-sensitive current [18]. Since the opening of the
SK2 channel was mainly dependent on the calcium con-
centration, the SK2 currents were recorded at 0 mV
voltage. The intracellular free calcium concentration was

controlled using the electrode solution, and the extracel-
lular buffer did not contain free calcium.
Bupivacaine cardiotoxicity results from the blockade of

a wide range of myocardial ion channels, the most im-
portant being the sodium channel [6, 7]. In this study,
the whole-cell patch-clamp technique was used to inves-
tigate the effects of LAs on SK2 currents, and the IC50
values of bupivacaine, ropivacaine, and lidocaine were
measured. Bupivacaine ranked first in its potency of
inhibiting SK2 currents, followed by ropivacaine and
lidocaine. Interestingly, this order of potency was con-
sistent with the order of LA cardiotoxicity. The max-
imum recommended clinical dose of bupivacaine was
175 mg. If a patient weighing 70 kg was given 175 mg
bupivacaine (blood volume was about 7 % of the body
weight); the bupivacaine plasma concentration could
reach 104.2µM. If 175 mg bupivacaine reached the heart
quickly, it would immediately cause cardiac arrest. The
concentration of bupivacaine in the heart would be
much higher than 104.2µM [19]. Therefore, theoretically,
the concentration of bupivacaine in the heart can reach
an IC50 value of 16.5µM.
Martín et al. [20] examined the inhibitory effect of

bupivacaine on large-conductance calcium-activated po-
tassium channels in smooth muscle cells of the human
umbilical artery. In his study, bupivacaine could block
these potassium channels. Also, Sbarbaro et al [21]. found
that lidocaine could block SK2 currents in nerve cells.
However, lidocaine blocked SK2 currents only when its
concentration exceeded clinical concentrations. The
blockade of SK2 channels by lidocaine is unlikely to cause
clinical effects. However, the present study found that SK2
channels were very sensitive to bupivacaine and ropiva-
caine. The specific mechanism underlying this inhibition
is still unclear. The inhibitory effect of bupivacaine on the
SK2 channel could affect several physiological functions

Fig. 2 Inhibitory effect of bupivacaine on SK2 currents was
reversible (n = 7 for each concentration).SK2 currents (0 mV)
obtained at baseline and in inhibition and washout phases with
exposure to 1μM, 10μM, and 100μM bupivacaine, respectively.
Baseline: perfusion with Tyrode’s solution. Inhibition: perfusion with
Tyrode’s solution containing bupivacaine. Washout: replacement of
bupivacaine-containing Tyrode’s solution with normal Tyrode’s
solution. Normalization inhibition was calculated as (Currentbaseline−
Currentinhibition)/Currentbaseline. The intrapipette free calcium
concentration was 1μM. *P < 0.05, compared with the baseline value

Fig. 3 Effect of calcium concentration on the inhibitory effect of bupivacaine. a SK2 currents obtained at 0 mV in the presence of different
concentrations of free calcium. b Degree of inhibition of SK2 currents (0 mV) by 10μM bupivacaine when the pipette solution contained different
concentrations of free calcium. Baseline: perfusion with Tyrode’s solution. Inhibition: perfusion with Tyrode’s solution containing bupivacaine.
Washout: replacement of bupivacaine-containing Tyrode’s solution with normal Tyrode’s solution. Normalization inhibition was calculated as
(Currentbaseline − Currentinhibition)/Currentbaseline.

*P < 0.05, between 0.25μM group and 0.5μM group, #P < 0.05, between 0.5μM group and 1.0μM
group. @P < 0.05, between inhibition value and baseline value
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and hence should be taken into account and considered as
bupivacaine cardiotoxicity.
The present study also found that the intracellular cal-

cium concentration could influence the inhibitory effect
of bupivacaine on SK2 currents. SK2 channel proteins
are coupled with calmodulin, and the binding of calcium
with calmodulin alters the conformation and function of
SK2 channels [22]. Studies have suggested that bupiva-
caine alters intracellular calcium concentrations, and
hence bupivacaine is expected to indirectly regulate the
SK2 channel. To eliminate the effects of this process, the
intracellular calcium concentration in the pipette solu-
tion was controlled in this study. Consequently, this
concentration-dependent inhibition of SK2 currents sug-
gested that the concentration of intracellular free cal-
cium contributed to bupivacaine cardiotoxicity.
Bupivacaine inhibits several ion currents in the heart

(e.g., sodium channels, L-calcium channels, and potas-
sium channels) [6, 7]. This study added SK2 channels to
the list of ion channels affected by bupivacaine. SK2
channels caused arrhythmia depending on their expres-
sion levels in cardiomyocytes [23, 24]. These channels
caused arrhythmia when the gene was expressed too
much or too little in cardiomyocytes [25]. SK2 channels
also participated in mitochondrial function [4, 26–28].
Therefore, the effects of SK2 channels on the action po-
tential and mitochondrial function suggested that the
blockade of SK2 channels was involved in bupivacaine
cardiotoxicity. More experiments are needed to prove
this hypothesis.

Limitations
Under normal circumstances, the SK2 channel proteins
are coupled with calmodulin. The binding of calcium
with calmodulin affects the conformation and function
of these channels [22]. However, this effect of calcium
on SK2 channels was influenced because only the SK2
gene was transfected into HEK293 cells in the present
study.

Conclusions
The results of this study suggested the inhibitory effect
of bupivacaine on SK2 channels. Future studies should
explore the effects of SK2 channels on bupivacaine
cardiotoxicity.
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