POSTER PRESENTATION

Open Access

Suppression of kidney fibrosis by cGMP-dependent protein kinase I

Elisabeth Schinner^{1*}, Andrea Schramm¹, Frieder Kees¹, Franz Hofmann², Jens Schlossmann¹

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

cGMP is synthesized via nitric oxide- or natriuretic peptide-stimulated guanylyl cyclases and exhibits pleiotropic regulatory functions also in the kidney. Both isoforms of cGKI (α , β) have been detected in arterioles, mesangium and within the cortical interstitium. In contrast to cGKI α , the β -isoform was not detected in the juxtaglomerular apparatus and in medullary fibroblasts.

The aim of this study was to examine the function of cGKI in the renal interstitium, emphasizing a functional differentiation of both isoforms. Interstitium fibroblasts play a prominent role in interstitial fibrosis. Accordingly, cGKI may also be involved in this pathophysiological process.

Results

Kidney fibrosis was induced by unilateral ureter obstruction (UUO). We treated α SM-rescue (expressing cGKI α only in smooth muscle under the control of the SM22 promotor with a cGKI-KO background), cGKI-KO mice (expressing no cGKI) and wt mice with YC-1 (sGC stimulator) which increases cGMP concentration.

Administration of YC-1 showed significantly antifibrotic effects in wt-, but not in α SM-rescue- and cGKI-KO mice, especially regarding the fibrosis marker Col1a1, TGF β and fibronectin. Thereby cGKI α was activated by YC-1 which phosphorylates RhoA and inhibits in turn the profibrotic RhoA/ROCK pathway.

Conclusion

Our results indicate that cGMP/cGKIα acts via RhoA/ ROCK, as an important suppressor of kidney fibrosis.

* Correspondence: Elisabeth.Schinner@chemie.uni-regensburg.de ¹Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Regensburg, Germany

Full list of author information is available at the end of the article

Acknowledgements

This work was supported by grants from the DFG SFB 699.

Authors' details

¹Pharmakologie und Toxikologie, Institut für Pharmazie, Universität Regensburg, Germany. ²Carvas-Zentrum, TU München, Germany.

Published: 29 August 2013

doi:10.1186/2050-6511-14-S1-P61

Cite this article as: Schinner *et al*: **Suppression of kidney fibrosis by cGMP-dependent protein kinase I.** *BMC Pharmacology and Toxicology* 2013 **14**(Suppl 1):P61.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Schinner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.