POSTER PRESENTATION

A novel role of the natriuretic peptide/cGMP/cGKI pathway in melanoma cells

Sandeep Dhayade^{1*}, Susanne Feil¹, Christoph Griessinger², Manfred Kneilling³, Birgit Schittek³, Robert Feil¹

From 6th International Conference on cGMP: Generators, Effectors and Therapeutic Implications Erfurt, Germany. 28-30 June 2013

Background

The cGMP/cGMP-dependent protein kinase type I (cGKI) signaling pathway is activated by nitric oxide (NO), natriuretic peptides (ANP, BNP & CNP), and cGMP-elevating drugs. It regulates important physiological functions such as platelet aggregation, smooth muscle tonus, and cell growth and survival. Recent reports indicate that cGMP might also play a role in tumorigenesis. In the present study we found that cGKI is expressed in melanoma cells of murine and human origin.

Results

Treatment of intact mouse B16 melanoma cells with the membrane-permeable cGMP analog 8-Br-cGMP induced phosphorylation of the cGKI substrates, vasodilator-stimulated phosphoprotein and phosphodiesterase 5. ANP and CNP, ligands of the membrane-bound guanylyl cyclase GC-A and GC-B, respectively, activated the endogenous cGMP/cGKI pathway. CNP-induced cGMP signals were detected in cell extracts by ELISA and in living cells by a FRET-based cGMP sensor [1]. DEA/NO, which stimulates NO-sensitive soluble guanylyl cyclase, did not increase cGMP signaling in B16 cells. Interestingly, activation of cGMP/cGKI signal transduction was associated with an increase in ERK1/2 and p38 phosphorylation, growth and migration of B16 melanoma cells. Similar results were obtained with WM1205 human melanoma cells.

Conclusion

We have identified a natriuretic peptide/cGMP/cGKI pathway in melanoma cells, which stimulates tumor cell growth and migration in vitro. Pharmacologic inhibition

* Correspondence: sandeep.dhayade@uni-tuebingen.de

¹Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany

Full list of author information is available at the end of the article

of cGMP signaling may offer a promising strategy for the treatment of melanoma.

Authors' details

¹Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany. ²Department of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, University of Tübingen, Tübingen, Germany. ³Department of Dermatology, University of Tübingen, Tübingen, Germany.

Published: 29 August 2013

Reference

 Russwurm M, Mullershausen F, Friebe A, Jager R, Russwurm C, Koesling D: Design of fluorescence resonance energy transfer (FRET)-based cGMP indicators: a systematic approach. *Biochem J* 2007, 407:69-77.

doi:10.1186/2050-6511-14-S1-P19

Cite this article as: Dhayade *et al.*: **A novel role of the natriuretic peptide/cGMP/cGKI pathway in melanoma cells.** *BMC Pharmacology and Toxicology* 2013 **14**(Suppl 1):P19.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Dhayade et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.